

Selective catalytic reduction of NO by alcohols on Co- and Fe-Siß catalysts

Stanislaw Dzwigaj ^{a,*}, Janusz Janas ^b, Tadeusz Machej ^b, Michel Che ^{a,c}

^a Laboratoire de Réactivité de Surface, UMR 7609-CNRS, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France ^b Institute of Catalysis and Surface Chemistry, Polish Academy of Science, Niezapominajek 8, 30239 Krakow, Poland ^c Institut Universitaire de France, France

Available online 12 September 2006

Abstract

Co–Si β and Fe–Si β catalysts prepared by a two-step post-synthesis method were characterised by EPR, diffuse reflectance UV–vis, XRD and N₂-physisorption. Iron and cobalt ions are present as isolated lattice tetrahedral Co^{II} and Fe^{III} species for low metal contents (0.7 and 0.9 wt.%, respectively). For higher iron content, FeO_x oligomers appear. Zeolites with isolated Co^{II} and Fe^{III} species are active in selective catalytic reduction of NO with ethanol. On FeO_x oligomers the oxidation of NO to NO₂ starts to dominate in the selective catalytic reduction of NO with ethanol at the temperatures higher than 700 K.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Dealuminated beta zeolite; Siβ; Silanol; Cobalt; Iron; XRD; EPR; Diffuse reflectance UV-vis; NO reduction; SCR; Oxide

1. Introduction

Microporous materials containing transition metal ions have been much studied because of their potential application in catalytic oxidation of hydrocarbons or reduction of NO [1–4]. There has been many reports on selective catalytic reduction (SCR) of NO_x by hydrocarbons in presence of oxygen over zeolites [3–6]. Alcohols such as methanol or ethanol have been found to act also as reducing agents [7,8].

In this paper, we have investigated the role of ethanol, as reducing agents, and of isolated lattice tetrahedral Co^{II} and Fe^{III} species in the SCR reaction on Co–Si β and Fe–Si β zeolites prepared by a two-step post-synthesis method which consists first of creating vacant T-sites by dealumination of β -zeolite with nitric acid, and then impregnating the resulting Si β with aqueous $Co(NO_3)_2$ and $Fe(NO_3)_3$ solutions, respectively.

Co and Fe-containing zeolites have been characterised both at the macroscopic (chemical analysis, BET, XRD) and molecular (DR UV–vis, EPR) levels. Co (0.7 wt.%) Si β and Fe (0, 9 and 3.6 wt.%) Si β have been chosen as catalysts.

2. Experimental

A tetraethylammonium β (TEA β) zeolite (Si/Al = 11) from RIPP (China) was dealuminated by treatment with a 13 mol L⁻¹ HNO₃ solution for 4 h at 353 K with stirring, as described earlier [9–11]. The resulting dealuminated Si β zeolite (Si/Al > 1300) with vacant T sites was recovered by centrifugation, washed with distilled water and dried overnight at 353 K.

Then, in order to introduce Co and Fe ions in vacant T sites Si β zeolite was impregnated in air by an aqueous Co(N-O₃)₂·6H₂O and Fe(NO₃)₃·9H₂O solution. First, 2 g of Si β were stirred for 24 h at 298 K in excess solvent using 200 ml of Co(NO₃)₂·6H₂O (1.2 × 10⁻³ mol L⁻¹) or 100 ml of Fe(NO₃)₃·9H₂O (0.9 or 3.6 mol L⁻¹) aqueous solution. Then, the suspensions (pH 2.4 or 2.3, respectively) were stirred for 2 h in air at 353 K until complete evaporation of water. The solid was then washed three times with distilled water and dried in air at 353 K overnight. The samples Co–Si β with 0.7 Co wt.% and Fe–Si β with 0.9 and 3.6 Fe wt.% are labeled Co_{0.7}Si β , Fe_{0.9}Si β and Fe_{3.6}Si β , respectively.

Nitrogen adsorption—desorption isotherms were obtained at 77 K using a Micromeritics ASAP 2010 apparatus [12]. Powder X-ray diffractograms were recorded on a Siemens D5000 using

^{*} Corresponding author. Tel.: +33 144 276 001; fax: +33 144 276 033. E-mail address: dzwigaj@ccr.jussieu.fr (S. Dzwigaj).

the Cu K α radiation (λ = 154.05 pm). EPR spectra were recorded at 298 and 77 K on a Bruker ESP 300 computerised spectrometer at 9.3 GHz (X band) with a 100 kHz field modulation and a 10 G modulation amplitude.

Diffuse reflectance UV-vis (DR UV-vis) spectra were recorded on a Cary 5E spectrometer equipped with an integrator and a double monochromator.

The activity of catalysts in the SCR of NO with ethanol was measured in a conventional flow reactor coupled to a gas chromatograph. The composition of the feed was following: 1000 ppm NO, 1000 ppm ethanol, 2 vol.% O_2 with a catalyst volume 1 ml and GHSV $10,000~h^{-1}$.

Before calalytic test the samples were heated up to 523 K in oxygen/helium mixture and then NO and ethanol vapour streams were switched on. In standard conditions 2 h catalytic runs in 523–623 K and 1 h runs in higher reaction temperatures were chosen (NO_x and CO_x concentrations at the reactor outlet were continuously monitored for checking if the pseudo steady-state conditions were established).

Reaction temperatures were enhaced every 50 K intervals up to 773 K, and then lowered in the same manner to 473 K. In the case of histeresis loop of NO conversion or product selectivities the heating sequence was repeated to obtaining the real steady-state reaction conditions in whole reaction temperature region.

3. Results and discussion

3.1. Characterization at the macroscopic level

The porosity and crystallinity of Si β zeolite are preserved after its impregnation by Co(NO₃)₂ or Fe(NO₃)₃ solutions, drying and calcination. Si β , Co_{0.7}Si β , Fe_{0.9}Si β and Fe_{3.6}Si β present similar XRD patterns which do not show any evidence of extra lattice crystalline compounds or long-range amorphization of the zeolite. A change of the position of the narrow main diffraction peak around 22–23° is generally taken as evidence of lattice contraction/expansion of the β structure [13,14]. The significant decrease of the 2θ value of this after introduction of Co or Fe ions indicates some expansion of the β structure and suggests that the latter are incorporated into lattice [13,14] and thus tetracoordinated.

3.2. Characterization at the molecular level: nature and environment of Co and Fe

As synthesized, the blue $Co_{0.7}Si\beta$ sample exhibits three UV-vis bands at about 537, 590 and 647 nm (Fig. 1) assigned to isolated tetrahedral Co species and attributed to ${}^4A_2 \rightarrow {}^4T_1$ (4P), ${}^4A_2 \rightarrow {}^4T_1$ (4F) and ${}^4A_2 \rightarrow {}^4T_2$ transitions, in line with earlier studies on Co-MFI and CoAPO-5 [15,16]. Exposure of $Co_{0.7}Si\beta$ to moist air does not lead to change of the coordination of Co^{II} ions from tetrahedral to octahedral symmetry: the color of this sample remains blue and there is no UV-vis band at about 500 nm characteristic of Co^{II} in octahedral symmetry (3d⁷ configuration), in line with earlier report on Co-MFI zeolite [15,17]. The absence of a broad band above 500 nm, typical of CoO_x oligomers [15], suggests that the latter are not present in

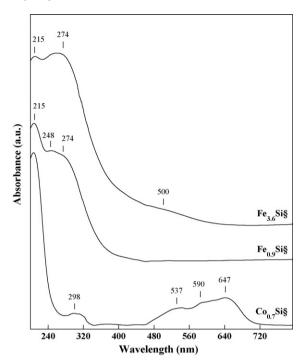


Fig. 1. DR UV–vis spectra of $Co_{0.7}Si\beta$, $Fe_{0.9}Si\beta$ and $Fe_{3.6}Si\beta$ samples. Spectra recorded at room temperature with $Si\beta$ as reference.

Co_{0.7}Siβ. The broad band around 289 nm is difficult to assign although it may be likely associated with oxygen-to-metal charge transfer (CT) transition [18], the oxidation state or coordination cobalt can not be ascertained.

 $Fe_{0.9}Si\beta$ exhibits bands at 215 and 248 nm assigned to isolated tetrahedral Fe^{III} species involved in oxygen Fe^{III} CT transitions while the band at 274 nm is associated to oxygen-to-octahedral Fe^{III} CT transition, in line with earlier results

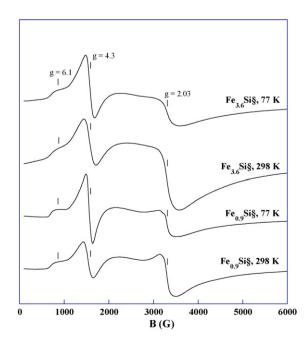


Fig. 2. EPR spectra (X-band) of Fe $_{0.9}$ Si β and Fe $_{3.6}$ Si β samples registered at 298 and 77 K.

[19,20]. For Fe_{3.6}Siβ, a broad band at about 500 nm is assigned to FeOx oligomers, as proposed earlier [19].

The EPR spectra of Fe_{0.9}Si β and Fe_{3.6}Si β show three signals at g = 6.1, 4.3 and 2.03 (Fig. 2). The signal at g = 4.3 is assigned to tetrahedral lattice Fe^{III} ions, the signal at g = 6.1 to isolated Fe^{III} ions in higher coordination and the line at g = 2.03 to isolated Fe^{III} ions or FeO_x oligomers, as proposed earlier [6].

3.3. Catalytical properties

When ethanol is used as a reducing agent, the NO conversion and selectivity towards N_2 are very high on $Co_{0.7}Si\beta$ and $Fe_{0.9}Si\beta$ over a wide temperature range.

Fig. 3 presents the results obtained with $Co_{0.7}Si\beta$. A wide temperature range with selectivity towards N_2 exceeding 95% is observed for relatively high NO conversion level (from 20 to 75%). Above 623 K, the NO conversion (Fig. 3A) and the selectivity towards N_2 decrease while NO_2 is detected (Fig. 3B).

Figs. 4A and 5A show the NO conversion and Figs. 4B and 5B selectivities toward N_2 and NO_2 as a function of temperature reaction for $Fe_{0.9}Si\beta$ and $Fe_{3.6}Si\beta$ samples, respectively. $Fe_{0.9}Si\beta$ exhibits a very high selectivity towards N_2 in SCR of NO (over 95%) in a temperature window much wider (from 548 to 773 K) than in the case of $Co_{0.7}Si\beta$. $Fe_{3.6}Si\beta$ exhibits a very high selectivity towards N_2 in SCR of NO in the low

temperature region (473–623 K) (Fig. 5B). However, at higher temperature selectivity towards N_2 substantially decreases at the expense of NO_2 formation. The different catalytic properties of $Fe_{0.9}Si\beta$ and $Fe_{3.6}Si\beta$ may be due to the different nature of iron species: the latter catalyst, apart from isolated Fe^{III} ions also contains FeO_{ν} oligomers.

Apart from the promissive activity of lattice tetrahedral Co^{II} and Fe^{III} species in SCR of NO towards N₂, the ethanol oxidation on the investigated samples was rather not selective: the substantial amounts of ethylene, organic intermediates and carbon monoxide were observed up to 623 K or higher reaction temperatures. It was checked that organic intermediates formed during reaction contain only small amounts of nitrogen containing compounds (mainly acetonitrile).

We suggest that decreasing of the selectivity towards N_2 at higher temperature is related to the depletion of organic mild oxidation product in the reaction zone. On the basis of experimental evidences we can assumne that the first step of SCR reaction is oxidation of NO to NO_2 . Then NO_2 reacts with ethanol molecule forming the active organic intermediates.

However, we have yet not enough experimental evidences to distinguish if N_2 may be formed in the consecutive reactions between NO and organic intermediates in the gaseous or adsorbed state [21,22] or in the course of NO dissociattive adsorption on the reduced catalyst surface and further

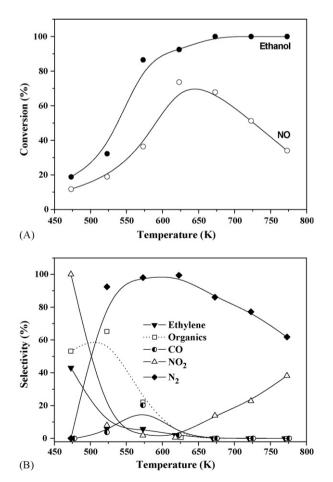


Fig. 3. Temperature reaction dependence of (A) ethanol and NO conversion and (B) product selectivities in SCR of NO with ethanol on $Co_{0.7}Si\beta$ catalyst.

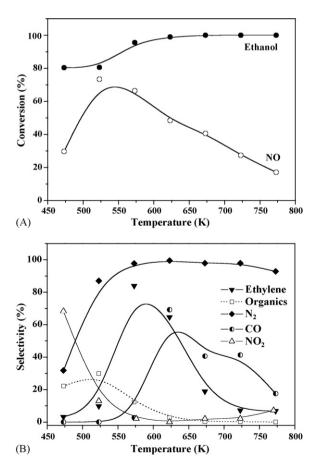


Fig. 4. Temperature reaction dependence of (A) ethanol and NO conversion and (B) product selectivities in SCR of NO with ethanol on Fe_{0.9}Si β catalyst.

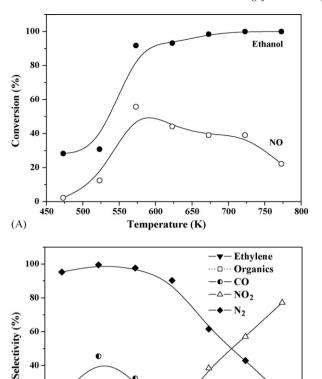


Fig. 5. Temperature reaction dependence of (A) ethanol and NO conversion and (B) product selectivities in SCR of NO with ethanol on $Fe_{3.6}Si\beta$ catalyst.

Temperature (K)

700

750

recombination of two atomic N adsorbed species to give rise to the formation of molecular N_2 . In the latter case NO_2 serves as active intermediates and acts as reductant of adsorbed oxygen species left from NO decomposition to N_2 allowing to restore of the catalytic sites according to Djéga-Mariadassou model [23,24].

4. Conclusions

20

The aim of this work is to study the role of ethanol, as reducing agent, and of isolated lattice tetrahedral Co^{II} and Fe^{III} species in the SCR of NO on Co–Si β and Fe–Si β zeolites prepared by a two-step post-synthesis method.

As shown by UV–vis and EPR, upon impregnation of Siβ, prepared by dealumination to generate vacant T sites, Co or Fe are introduced from aqueous Co(NO₃)₂·6H₂O or Fe(NO₃)₃·9H₂O solution as isolated tetrahedral Co^{II} or Fe^{III} species respectively for low metal contents (0.7 and 0.9 wt.%,

respectively). For higher iron content (3.6 wt.%) FeO_x oligomers appear on the surface of Si β zeolite.

Zeolites with isolated tetrahedral Co^{II} and Fe^{III} species are active and selective towards N_2 in the SCR of NO with ethanol. When FeO_x oligomers appear, the oxidation of NO to NO_2 starts to dominate in the SCR of NO with ethanol at temperature above 700 K.

Further studies are underway to complement the description of the Co and Fe sites present in Co–Si β and Fe–Si β zeolites, particularly with EPR and Mössbauer spectroscopies.

References

- E.M. Flanigen, B.M. Lok, R.L. Patton, S.T. Wilson, Pure Appl. Chem. 58 (1986) 1351.
- [2] J.M. Thomas, R. Raja, G. Sankar, R.G. Bell, Acc. Chem. Res. 34 (2001) 191.
- [3] H. Imai, T. Ogawa, K. Sugimoto, M. Kataoka, Y. Tanaka, T. Ono, Appl. Catal. B 55 (2005) 259.
- [4] L. Capek, J. Dedecek, B. Wichterlova, J. Catal. 227 (2004) 352.
- [5] T. Tabata, M. Kokitsu, H. Ohtsuka, O. Okada, L.M.F. Sabatino, G. Bellusi, Catal. Today 227 (1996) 91.
- [6] M. Santhosh Kumar, M. Schwidder, W. Gruner, A. Bruckner, J. Catal. 227 (2004) 384.
- [7] M. Tabata, H. Tsuchida, K. Miyamoto, T. Yoshinari, H. Yamazaki, H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, Appl. Catal. B 6 (1995) 169.
- [8] A.L.S.M. Salgado, F.B. Passos, M. Schmal, Catal. Today 85 (2003) 23.
- [9] S. Dzwigaj, M.J. Peltre, P. Massiani, A. Davidson, M. Che, T. Sen, S. Sivasanker, J. Chem. Soc., Chem. Commun. 87 (1998).
- [10] S. Dzwigaj, M. Matsuoka, R. Franck, M. Anpo, M. Che, J. Phys. Chem. B 102 (1998) 6309.
- [11] S. Dzwigaj, M. Matsuoka, M. Anpo, M. Che, J. Phys. Chem. B 104 (2000) 6012
- [12] E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951)
- [13] M.A. Camblor, A. Corma, J. Pérez-Pariente, Zeolites 13 (1993) 82.
- [14] J.S. Reddy, A. Sayari, Stud. Surf. Sci Catal. 94 (1995) 309.
- [15] G. Fierro, M.A. Eberhardt, M. Houalla, M.H. Hercules, W.K. Hall, J. Phys. Chem. 100 (1996) 8468.
- [16] V.P. Shiralkar, C.H. Saldarriaga, J.O. Perez, A. Clearfield, Zeolites 9 (1989) 474.
- [17] M. Mhamdi, E. Marceau, S. Khaddar-Zine, A. Ghorbel, M. Che, Y. Ben Taarit, F. Villain, Catal. Lett. 98 (2004) 1.
- [18] V. Kurshev, L. Kevan, D.J. Parillo, C. Pereira, G.T. Kokotailo, R.J. Gorte, J. Phys. Chem. 98 (1994) 10160.
- [19] S. Bordiga, R. Buzzoni, F. Geobaldo, C. Lamberti, E. Giamello, A. Zecchina, G. Leofanti, G. Petrini, G. Tozzola, G. Vlaic, J. Catal. 158 (1996) 486.
- [20] H.H. Tippins, Phys. Rev. B 72 (1970) 279.
- [21] R. Brosius, J.A. Martens, Top. Catal. 28 (2004) 119.
- [22] F.C. Meunier, J.P. Breen, V. Zuzaniuk, M. Olsson, J.R.H. Ross, J. Catal. 187 (1999) 493.
- [23] G. Djéga-Mariadassou, F. Fajardie, J.-F. Tempère, J.-M. Manoli, O. Touret, G. Blanchard, J. Mol. Catal. A 161 (2000) 179.
- [24] O. Gorce, F. Baudin, C. Thomas, P. Da Costa, G. Djéga-Mariadassou, Appl. Catal. B 54 (2004) 69.